Effect of Oct3 Genetic Polymorphism on the Response of Metformin in Type 2 Diabetes Mellitus: Narrative Review

Swathi Swaroopa Borra, Bhavya Chebrolu, Poojitha T, Sujin Bright F J, Sadagoban GK, Arun Kanniyappan Parthasarathy

Abstract

Context: Metformin, the first line therapy of Type 2 Diabetes Mellitus is known to be transported by OCT3 (Organic Cation Transporter 3). Polymorphisms in this gene may lead to interindividual differences in the response to metformin.
Objective: This study aims to compile and summarise the effect of OCT3 polymorphism on effect of metformin.
Methods: PubMed/MEDLINE, ResearchGate, Google Scholar, Cochrane Library and Scopus were used for literature review. Cmax (Maximum concentration), Tmax (Time to reach maximum concentration), AUC (Area under the curve) and Kel (Elimination rate constant) were used to assess pharmacokinetics and HbA1c (Hemoglobin A1c), blood glucose levels for pharmacodynamics.
Results: Data extraction showed that 19 OCT3 polymorphisms were analyzed in various ethnic communities with the plurality of Asians. The results of these genotype alleles were found to be favorable (9), negative (3) and have no impact (7) on the response of metformin. A positive effect on metformin response was expressed as higher Cmax (Maximum concentration), AUC (Area under the curve), lower Kel (Elimination rate constant) or reduced HbA1c (Hemoglobin A1c), FBG (Fasting blood glucose).
Conclusion: Influence of OCT3 polymorphisms on metformin responses were unique to the population. This recommends new research requirement on association between OCT3 polymorphism and Metformin.

Full Text:

PDF

References

Al-Eitan LN, Almomani BA, Nassar AM, Elsaqa BZ, Saadeh NA. 2019. Metformin Pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 Polymorphisms on Glycemic Control and HbA1c Levels. J Pers Med. 9(1).

An H, He L. 2016. Current understanding of metformin effect on the control of hyperglycemia in diabetes. J Endocrinol. 228(3):R97-106.

Association AD. 2014. Standards of Medical Care in Diabetes—2014. Diabetes Care. 37(Supplement 1):S14–S80.

Chen EC, Liang X, Yee SW, Geier EG, Stocker SL, Chen L, Giacomini KM. 2015. Targeted disruption of organic cation transporter 3 attenuates the pharmacologic response to metformin. Mol Pharmacol. 88(1):75–83.

Chen K, Qian W, Jiang Z, Cheng L, Li J, Sun L, Zhou C, Gao L, Lei M, Yan B, et al. 2017. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Mol Cancer. 16(1):131.

Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, Portman MA, Chen E, Ferrin TE, Sali A, Giacomini KM. 2010. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet Genomics. 20(11):687–699.

Clifford J. Bailey, M.R.C.Path, Robert C. Turner. feb 29. Metformin | NEJM. 334(9):574–579.

Cook MN, Girman CJ, Stein PP, Alexander CM. 2007. Initial monotherapy with either metformin or sulphonylureas often fails to achieve or maintain current glycaemic goals in patients with Type 2 diabetes in UK primary care. Diabet Med. 24(4):350–358.

Crowley MJ, Diamantidis CJ, McDuffie JR, Cameron CB, Stanifer JW, Mock CK, Wang X, Tang S, Nagi A, Kosinski AS, Williams JW. 2017. Clinical Outcomes of Metformin Use in Populations With Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease: A Systematic Review. Ann Intern Med. 166(3):191–200.

Ghaffari-Cherati M, Mahrooz A, Hashemi-Soteh MB, Hosseyni-Talei SR, Alizadeh A, Nakhaei SM. 2016. Allele frequency and genotype distribution of a common variant in the 3´-untranslated region of the SLC22A3 gene in patients with type 2 diabetes: Association with response to metformin. J Res Med Sci. 21:92.

Gong L, Goswami S, Giacomini KM, Altman RB, Klein TE. 2012. Metformin pathways: Pharmacokinetics and pharmacodynamics. Pharmacogenetics and Genomics. 22(11):820–827.

Gründemann D, Schechinger B, Rappold GA, Schömig E. 1998. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat Neurosci. 1(5):349–351.

Hakooz N, Jarrar YB, Zihlif M, Imraish A, Hamed S, Arafat T. 2017. Effects of the genetic variants of organic cation transporters 1 and 3 on the pharmacokinetics of metformin in Jordanians. Drug Metab Pers Ther. 32(3):157–162.

Hayer-Zillgen M, Brüss M, Bönisch H. 2002. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br J Pharmacol. 136(6):829–836.

Heise M, Lautem A, Knapstein J, Schattenberg JM, Hoppe-Lotichius M, Foltys D, Weiler N, Zimmermann A, Schad A, Gründemann D, et al. 2012. Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer [Internet]. 12. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84858713948&doi=10.1186%2f1471-2407-12-109&partnerID=40&md5=afa8cdf03bb7381bc502275e19509ac3

Hermann LS. 1990. Biguanides and Sulfonylureas as Combination Therapy in NIDDM. Diabetes Care. 13(Supplement 3):37–41.

Holman R. 2007. Metformin as first choice in oral diabetes treatment: the UKPDS experience. Journées annuelles de diabétologie de l’Hôtel-Dieu. x:13–20.

Hosseyni-Talei SR, Mahrooz A, Hashemi-Soteh MB, Ghaffari-Cherati M, Alizadeh A. 2017. Association between the synonymous variant organic cation transporter 3 (OCT3)-1233G>A and the glycemic response following metformin therapy in patients with type 2 diabetes. Iran J Basic Med Sci. 20(3):250–255.

Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. 2012. Management of Hyperglycemia in Type 2 Diabetes: A Patient-Centered Approach: Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 35(6):1364–1379.

Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O’Neill MC, Zinman B, Viberti G. 2006. Glycemic Durability of Rosiglitazone, Metformin, or Glyburide Monotherapy. New England Journal of Medicine. 355(23):2427–2443.

Kharroubi AT, Darwish HM. 2015. Diabetes mellitus: The epidemic of the century. World J Diabetes. 6(6):850–867.

Kwon EY, Chung J-Y, Park HJ, Kim BM, Kim M, Choi JH. 2018. OCT3 promoter haplotype is associated with metformin pharmacokinetics in Koreans. Sci Rep. 8(1):16965.

Liang X, Giacomini KM. 2017. Transporters Involved in Metformin Pharmacokinetics and Treatment Response. Journal of Pharmaceutical Sciences. 106(9):2245–2250.

Markowicz-Piasecka M, Huttunen KM, Mateusiak Ł, Mikiciuk-Olasik E, Sikora J. 2017. Is metformin a perfect drug? Updates in pharmacokinetics and pharmacodynamics. Current Pharmaceutical Design. 23(17):2532–2550.

Minematsu T, Giacomini KM. 2011. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 10(3):531–539.

Moeez S, Riaz S, Masood N, Kanwal N, Arif MA, Niazi R, Khalid S. 2019. Evaluation of the rs3088442 G>A SLC22A3 Gene Polymorphism and the Role of microRNA 147 in Groups of Adult Pakistani Populations With Type 2 Diabetes in Response to Metformin. Can J Diabetes. 43(2):128-135.e3.

Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K. 2002. Gene Expression Levels and Immunolocalization of Organic Ion Transporters in the Human Kidney. JASN. 13(4):866–874.

Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B, American Diabetes Association, European Association for Study of Diabetes. 2009. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 32(1):193–203.

ncbi. SLC22A3 solute carrier family 22 member 3 [Homo sapiens (human)] - Gene - NCBI [Internet]. [accessed 2020 Apr 28]. https://www.ncbi.nlm.nih.gov/gene/6581

Pawlyk AC, Giacomini KM, McKeon C, Shuldiner AR, Florez JC. 2014. Metformin pharmacogenomics: Current status and future directions. Diabetes. 63(8):2590–2599.

Sanchez-Rangel E, Inzucchi SE. 2017. Metformin: clinical use in type 2 diabetes. Diabetologia. 60(9):1586–1593.

Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T, Uchiumi T, Kuwano M, Nagata H, Tsukimori K, et al. 2005. Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther. 315(2):888–895.

Shikata E, Yamamoto R, Takane H, Shigemasa C, Ikeda T, Otsubo K, Ieiri I. 2007. Human organic cation transporter ( OCT1 and OCT2 ) gene polymorphisms and therapeutic effects of metformin. Journal of Human Genetics. 52(2):117–122.

Sirtori CR, Pasik C. 1994. Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol Res. 30(3):187–228.

Thomas I, Gregg B. 2017. Metformin; a review of its history and future: from lilac to longevity. Pediatr Diabetes. 18(1):10–16.

Wang Y-W, He S-J, Feng X, Cheng J, Luo Y-T, Tian L, Huang Q. 2017. Metformin: a review of its potential indications. Drug Des Devel Ther. 11:2421–2429.

Wróbel MP, Marek B, Kajdaniuk D, Rokicka D, Szymborska-Kajanek A, Strojek K. 2017. Metformin - a new old drug. Endokrynol Pol. 68(4):482–496.

Wu X, Kekuda R, Huang W, Fei YJ, Leibach FH, Chen J, Conway SJ, Ganapathy V. 1998. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J Biol Chem. 273(49):32776–32786.

Yerevanian A, Soukas AA. 2019. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr Obes Rep. 8(2):156–164.

Zhou P-T, Li B, Liu F-R, Zhang M-C, Wang Q, Li Y-Y, Xu C, Liu Y-H, Yao Y, Li D. 2017. Metformin is associated with survival benefit in pancreatic cancer patients with diabetes: a systematic review and meta-analysis. Oncotarget. 8(15):25242–25250.

Refbacks

  • There are currently no refbacks.