

Journal of Global Pharma Technology

Available Online at: www.jgpt.co.in

RESEARCH ARTICLE

Synthesis and Characterization of Some New Di-amines Derived from Di-amines Supplemented with Di-heterocyclic Five Membered Rings and Some Aromatic Aldehydes

Noor S. Noori^{1*}, Mohammad F. Mesher², Tahseen Ali Zaidan³

- ^{1.} Department of Chemistry, College of Science, University of Anbar, Anbar, Iraq.
- ² Department of Chemistry, College of Science, University of Anbar, Anbar, Iraq.
- ^{3.} Department of Ecology, College of Applied Sciences, University of Anbar, Hit 31007, Anbar, Iraq.

*Corresponding Author's: Noor S. Noori

Abstract

It has been documented that imines and heterocyclic compounds with five membered rings and their derivatives, have enormous biological activity in various area as medicinal and pharmaceutical. Therefore, supplementing the di imines with five -membered heterocyclic rings, perhaps enhance the biological activity characters of the resulting products. Consequently, the target of present work involve the developing of new imines derived from selected di amines after connecting a five membered heterocyclic rings of the type di thiazole and di oxazole to the parent molecules via the reaction of the previous di amines with chloroacetyl chloride yield the corresponding amides $[A_1-A_3]$, then subsequent reaction of the later with of thiourea and urea give substantially new di thiazol $[th_1-th_3]$ and di oxazole $[Ox_1-Ox_3]$ respectively .Reaction of these new developed di amines with selected aromatic aldehydes result a pavantly in the formation of the desired bis imines $[Sc_1-Sc_{10}]$. On the other hand the structures of all the synthesized compounds were confirmed by their physical properties, such as colors and melting points and spectroscopic measurements FT-IR, 1H -NMR and ${}^{13}C$ -NMR for selected compounds.

Keywords: Di imines, Chloroacetyl chloride, Thiazole-2, 4-diamines, oxazole-2, 4-diamines.

Introduction

Oxazoles the parent compound for a vast class of hetero cyclic aromatic compounds. These are azoles with oxygen and nitrogen separated by one carbon. They are aromatic compounds but less so than the thiazoles [1]. Oxazole is a heterocyclic compound exhibits a wide variety of pharmacological activities such as antidepressants [2], anti-diabetic [3], anti-microbial [4] and diuretics [5]. Thiazole belongs to a class of heterocyclic compounds having a nitrogen atom and sulfur atom as part of the aromatic 5-member ring [6].

It is one of the most intensively studied classes of aromatic five-membered heterocyclic and it was first defined by Hantzsch and Weber in 1887 [7]. The thiazole ring is a constituent of medicinal agents, agrochemicals, and dyes. Thiazole found application in drug development for the treatment of different diseases, for example, allergies [8] hypertension, fungal infections,

and schizophrenia [9]. Natural products containing the thiazole nucleus have been previously described as biologically active agents, for example vitamin B1 is an important precursor for the synthesis of acetylcholine, which improves the function of the nervous system [10]. Amides functionalities are inarguably among the most abundant motif having presence in biologically significant molecules, such as proteins [11] natural products, marketed drugs and synthetic intermediates.

Amide bond is progressively important in pharmaceutical chemistry, being present in 25% of available drugs, with amidation reactions being among the most commonly used reactions in medicinal chemistry [12]. The amide group is a common functional group in natural compounds. Many commercial pesticide compounds have acyl amino group in the molecule, for example

benzoyl phenyl urea insecticides, urea, amides and carbonates herbicides [13]. Schiff bases are a well-known class of compounds with the general structure R₁R₂C=NR₃ [14], and they are named in honour to Hugo Schiff, the scientist who first synthesized members of this class of substances in 1864 [15]. Schiff bases are some of the most widely used organic compounds [16]. Schiff bases also exhibit a wide variety of biological activities, including antifungal, antibacterial, antitumor, anti-inflammatory, trypanocidal, anti-HIV, anti-malarial and antimicrobial

Experimental

Materials and Instruments

Chemicals and solvents used in this work are supplied from BDH, Fluka, Merck and Sigma Aldrich companies and used without further purification. Melting points were uncorrected and registered via digital Stuart scientific SMP3 melting point device. FT-IR spectra of the compounds in the (4000-600) cm⁻¹ spectral range were recorded on SHIMADZU FT-IR-8400 Fourier transform Infrared spectrophotometer using KBr discs. ¹H-NMR, ¹³C-NMR was recorder on Bruker Ultra Shield, 300MHz, using DMSO-d6 as solvent and TMS as internal standard. Thin-layer chromatography was performed glass plats coated with 0.25 mm layer of silica-gel (Fluka).

General Procedures

Synthesis of Chloroacetyl Substituted Amides (A_1-A_3)

The amides of chloroacetyl chloride were synthesized according to the published procedure with some modification, a solution of chloroacetyl chloride (0.02mol), in dry benzene (250 ml), was added to the solution of diamine (0.01 mol) in dry benzene (100 ml) at 0-5 °C and (3-5) drops of triethyl amine with constant stirring during half an hour. The reaction mixture was refluxed for 4 hour.

Then was poured into ice water. The obtained product was filtered and washed with cold water, dried and recrystallized from ethanol [18, 19], Physical properties of the amides products Table (1).

Synthesis of oxazole -2, 4-diamine Compounds (Ox_1-Ox_3)

A mixture of (0.01 mol) of compounds (A_1 - A_3) and (0.02 mol) of urea was dissolved in (40 ml) of ethanol. The mixture was refluxed for (6) hrs. The solid product was filtered and recrystallized from ethanol, The Physical properties of compounds (Ox_1 - Ox_3) shown in Table (2).

Synthesis of thiazole-2, 4-diamine Compounds (th₁-th₃)

A mixture of (0.01 mol) of compound (A_1 - A_3) and (0.02 mol) of thiourea was dissolved in (40 ml) of ethanol. The mixture was refluxed for (4) hrs. The solid product was filtered and recrystallized from ethanol, The Physical properties of compounds (th_1 - th_3) shown in Table (3).

Reaction of the Previously Prepared Heterocyclic Di amines with Some Selected Aldehyde to Form Di imines or Schiff bases (Sc₁-Sc₁₀).

- Reaction (0.01 mol) of oxazole -2,4-diamine compounds (Ox₁-Ox₃) with (0.02 mol) aromatic aldehyde was dissolved in (30 ml)of ethanol and add 3 drops of glacial acetic acid as a catalyst .The mixture was refluxed for (4) hrs. The solid product was filtered and recrystallized from ethanol (Sc₁-Sc₆).
- Reaction (0.01 mol) of thiazole-2, 4-diamine compounds (th₁-th₃) with (0.02 mol) aromatic aldehyde was dissolved in (40 ml) of ethanol and add 3 drops of glacial acetic acid as a catalyst .The mixture was refluxed for (6) hrs. The solid product was filtered and recrystallized from ethanol (Sc₇-Sc₁₀) [20]. Table (4).

Table 1: Structures, colors, m.p., % yields for the amides compounds (A₁-A₃)

Comp.	Physical Properties							
No.	Structures	M.P°C	Yield%	Color				
\mathbf{A}_1	$\begin{array}{c} Cl & Cl & Cl & H \\ ClH_2C & & & \\ N,N'\text{-(methylenebis(2-chloro-4,1-phenylene))} bis(2\text{-chloroacetamide}) \end{array}$	180-184	90	Off white				

\mathbf{A}_2	$\begin{array}{c} O \\ N \\$	78–81	79	Pink
$\mathbf{A_3}$	$\begin{array}{c} O \\ C \\ H \\ N \\ \end{array}$	80–82	75	Brown

Table 2: Structures, colors, m. p, %yields for the oxazoles compounds (Ox_1 - Ox_3)

Comp.	Physical Properties								
No.	Structures	М.Р° С	Yield%	Color					
Ox ₁	H_2N H_2N N_1 N_2 N_4 N_4 -(methylenebis(2-chloro-4,1-phenylene))bis (oxazole-2,4-diamine)	190–192	90	Pale Yellow					
Ox ₂	H_2N N N N N N N N N N	60-62	79	Pink					
	N4,N4'-(1H-1,2,4-triazole-3,5-diyl)bis(oxazole-2,4-diamine)								
Ox ₃	H_2N N N N N N N N N N	93–95	75	Gray					
	N4,N4'-(thiobis(4,1-phenylene))bis(oxazole-2,4-diamine)								

Table 3.Structures, colors, m. p, %yields for the thiazoles compounds (th₁-th₃)

Comp.	Physical Properties			
No.	Structures	M.P°C	Yield%	Color
\mathbf{th}_1	H ₂ N C-N Cl H N-C N NH ₂	98–100	77	Off White
	N4,N4'-(methylenebis(2-chloro-4,1-phenylene))bis (thiazole-2,4-diamine)			
$ h_2$	H_2N N N N N N N N N N	61 –63	87	Off white
	N4,N4'-(1H-1,2,4-triazole-3,5-diyl)bis(thiazole-2,4-diamine)			
\mathbf{th}_3	$\begin{array}{c c} S & C - H \\ H_2 N & N \end{array}$	190–192	72	Brown
	N4,N4'-(thiobis(4,1-phenylene))bis(thiazole-2,4-diamine)			

Table 4: Structures, colors, m. p, %yields for the di iminescompounds (Sc₁-Sc₁₀)

Comp.	uctures, colors, m. p, %yields for the di iminescompounds (Sc ₁ -Sc ₁₀) Physical Properties			
No.	Structures	M.P°C	Yield%	Color
\mathbf{Sc}_1	OH 2,2'-((1E,1'E)-((((methylenebis(2-chloro-4,1-phenylene)) bis(azanediyl))bis(oxazole-4,2-diyl))bis(azanylylidene)) bis(methanylylidene))diphenol	186-188	80	White
\mathbf{Sc}_2	H C N H C N	195-197	79	Yellow
Sc ₃	HC N CI CI H N CH N CH N CH N CH N CH N	184-185	85	Pale Yellow
$\mathbf{Sc_4}$	HC N N N N H C N CH N H N H C N CN 4,4'-((IZ,1'Z)-(((((1H-1,2,4-triazole-3,5-diyl)bis(azanediyl)) bis(oxazole-4,2-diyl))bis(azanylylidene))bis (methanylylidene))dibenzonitrile	220-221	69	Pink
\mathbf{Sc}_{5}	H ₃ C CH ₃ N3,N5-bis(2-(((Z)-4-(dimethylamino)benzylidene) amino)oxazol-4-yl)-1H-1,2,4-triazole-3,5-diamine	60-62	84	Light yellow
\mathbf{Sc}_6	HC N C H N C	135-137	77	Orange
Sc ₇	$\begin{array}{c} H \\ C \\ N \end{array}$	184-185	78	Dark - Yellow

$\mathbf{Sc_8}$	HC N N N N N N N N N CH N N N N N N N N	270-271	84	Dark - Yellow
\mathbf{Sc}_9	CN 3,3'-((1E,1'E)-((((methylenebis(2-chloro-4,1-phenylene)) bis(azanediyl))bis(thiazole-4,2-diyl))bis(azanylylidene)) bis(methanylylidene))dibenzonitrile	210-212	90	Pale Yellow
Sc ₁₀	H ₃ C N _{CH₃} H ₃ C N _{CH₃} CH N,N'-(thiobis(4,1-phenylene))bis(2-(((E)-4-(dimethylamino)benzylidene) amino)thiazol-4-amine)	175-174	75	Brown

Results and Discussion

Part one

The synthetic sequences for preparation of series of new hetero cyclic compounds derived from di amines after developing of five membered heterocyclic ring of the thiazole or oxazole to these di amines in the mean time a new diamines groups are formed which are susceptible to enter all characteristic organic reaction according to this new compounds have been prepared as in Scheme -1.

$$H_{2}N \longrightarrow G \longrightarrow H_{2}$$

$$G \longrightarrow G \longrightarrow G \longrightarrow G$$

$$H_{2}N \longrightarrow G \longrightarrow G$$

$$H_{2}N \longrightarrow H_{2}$$

$$H$$

Scheme -1: Synthesis of chloroacetyl substituted amides, oxazole -2, 4-diamine and thiazole-2, 4-diamine

The FT-IR spectrum of chloroacetyl substituted amides (A₁-A₃) showed the appearance of bands at (3153- 3205) cm⁻¹ due to v (NH) and (3214-3374) cm⁻¹ for vibration of v (C-H) arom .

While v(C-H) for aliphatic at (2700- 2898) cm⁻¹. Besides the appearance of bands at (1511- 1589) cm⁻¹due to (C=C) aromatic and at (1624-1687) cm⁻¹attributed to v (C=O). Table (5).

The ¹H-NMR spectrum of compound (A₁) showed singlet signal at δ = (2.5) ppm due to DMSO, singlet signal at δ = (3.5) ppm due to (-CH₂-) protons, singlet signal at δ = (4.4) ppm due to (Cl-CH₂) protons, multi signals at δ =(6.8- 7.8) ppm due to aromatic rings protons, besides to these a singlet signals appears at δ =(9.9) ppm due to ((C=O)N-H) amide proton. Table (9) and Figure (2).

The FT-IR spectrum of Oxazole -2,4-diamine compounds (Ox₁-Ox₃) showed the appearance of bands at (3265-3376) cm⁻¹due to v (NH₂, NH) and (3011-3180) cm⁻¹for vibration of v (C-H) arom. while v(C-H) for aliphatic at (2722- 2877) cm⁻¹. Besides the appearance of bands at (1000- 1128) cm⁻¹attributed to v (C-O-C). Table (6).

The ¹H-NMR spectrum of compound (Ox₃) showed singlet signal at δ = (2.5) ppm due to DMSO, singlet signal at δ = (4.1) ppm due to (C=C-H) protons, singlet signal at δ = (6.3) ppm , (6.5) ppm due to (-NH₂) protons and (-NH) protons, multi signals at δ =(7.6 - 8.1) ppm due to aromatic rings protons. Table (9) and figure (4).

The ${}^{13}\text{C-NMR}$ spectrum of this compound (Ox₃) figure (5). In ${}^{13}\text{C}$ NMR (DMSO-d₆)

spectrum showed many signals at δ : 177.45 ppm (C₁), 121.84 ppm (C₂), 129.07 ppm (C₃), 1143.38 ppm (C₄), 151.83 ppm (C₅) and 112.13 ppm (C₆).

The FT-IR spectrum of Thiazole-2,4-diamine compounds (th₁-th₃) showed the appearance of bands at (3125 - 3380) cm⁻¹due to v (NH₂, NH) and (2010 - 3170) cm⁻¹for vibration of v (C-H) arom. While v (C-H) for aliphatic at (2884) cm⁻¹. Besides the appearance of bands at (700 - 750) cm⁻¹attributed to v (C-S). Table (7).

The $^1\text{H-NMR}$ spectrum of compound (th₂) showed singlet signal at δ = (1.2) ppm due to DMSO, singlet signal at δ = (2.5) ppm due to (C=C-H) protons, singlet signal at δ = (7.3) ppm , (3.4) ppm due to (-NH₂) protons and (-NH) protons, Table (9). Figure (7).

The $^{13}\text{C-NMR}$ spectrum of this compound (th₂) figure (8). In ^{13}C NMR (DMSO-d₆) spectrum showed many signals at δ : 115.01 ppm (C₁), 121.66 ppm (C₂), 148.58 ppm (C₃) and 133.04 ppm (C₄).

Part Two

Reaction of diamine dioxazol derivatives with aromatic aldehydes as in Scheme -2.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

R = o-OH; p-CN; m-Cl; p-F; $N(CH_3)_2$

Scheme -2: Synthesis of oxazole -2-imino-4-amine

Reaction of diamine dithiazol derivatives

with aromatic aldehydes as in Scheme -3.

Scheme -3: Synthesis of thiazol -2-imino-4-amine

 $R = p\text{-CN} ; p\text{-CF}_3 ; p\text{-N(CH}_3)_2 ; p\text{-F}$

The formation of Schiff bases (Sc₁-Sc₁₀) were indicated by the presence in its FTIR-spectra of the azomethine v (CH=N) stretching band at (1604- 1653) cm⁻¹ [21] other absorption bands appeared at (3055- 3344), (2810-2925), (2965-3163) and (1533-1604) cm⁻¹due to (NH), v (C-H) aliph., v (C-H) arom.

And v (C=C) arom. Respectively [22].All the spectral data show disappearance the absorption of the v (NH₂) stretching band indicating success of formation reaction as shown in table (8).The figure (9,10) belongs to compound (Sc₁,Sc₄) of some them.

Table 5: FTIR spectral data cm⁻¹ of the chloroacetyl substituted amides (A₁-A₃)

Com.	$f Major\ FTIR\ Absorption\ cm^{-1}$								
No.	v (C-H) arom.	□(C=C) arom.	v (C=O)	v (C-H) aliph.	v (NH)	Others			
\mathbf{A}_1	3136	1511	1662	2860	3285	v(C-Cl) 831, v(C-N) 1230			
\mathbf{A}_2	3153	1535	1687	2898	3214	v (C=N) 1646 , v (C-Cl) 789, v (C-N) 1295			
A_3	3205	1589	1624	2700	3331	v(C-S) 733, v(C-Cl) 824, v(C-N) 1171			

Table 6: FT-IR spectral data cm $^{-1}$ of the oxazoles compounds (Ox $_1$ -Ox $_3$)

Comm		Major FTIR Absorption cm ⁻¹								
Comp. No.	v (C-H) arom.	□(C=C) arom.	v (C-O-C)	v (C-H) aliph.	v (NH ₂ , NH)	Others				
Ox_1	3011	1581	1056	2877	3376,3360	v(C-N) 1310, v(C-Cl) 811				
Ox_2	3135	1575	1128	-	3363,3358	v (C=N) 1644,				
Ox_3	3180	1531	1000	-	3369,3265	v (C-S) 601 , v (C=N) 1645				

Table 7: FT-IR spectral data cm-1 of the thiazoles compounds (th1-th3)

Comm	Major FTIR Absorption cm ⁻¹									
Comp. No.	v (C-H) arom.	□(C=C) arom.	v (C=N)	v (C-H) aliph.	v (NH ₂ , NH)	Others				
\mathbf{th}_1	3010	1504	1646	2884	3293,3125	v(C-N) 1372 , v(C-S) 750				
\mathbf{th}_2	3170	1473	1609	-	3380,3276	v (C-N) 1174, v (C-S) 700				
\mathbf{th}_3	3034	1487	1615	-	3325,3212	v(C-N) 1397, v(C-S) 719				

Table 8: FTIR spectral data cm⁻¹ of the di imines compounds (Sc₁-Sc₁₀)

	Major FTIR Absorption cm ⁻¹								
Comp. No.	v(C-H) arom.	v(C=C) arom.	v(C=N)	v (C-H) aliph.	v(NH)	Others			
\mathbf{Sc}_1	3163	1591	1643	2837	3271	v (C-N) 1240, v (C-Cl) 819, v (C-O-C) 1078, v (OH)3334			
\mathbf{Sc}_2	3055	1557	1613	2876	3337	v (C-N) 1229, v (C-Cl) 824, v (C-O-C)1071			
\mathbf{Sc}_3	3078	1570	1638	2850	3344	v (C-N) 1237, v (C-F) 931, v (C-O-C) 1025			
$\mathbf{Sc_4}$	2965	1553	1653	2882	3261	v (C-N) 1390 , v (C-O-C)1027 , v (CN)2229			
\mathbf{Sc}_{5}	3045	1533	1618	2810	3220	v (C-N) 1323, v (C-O-C)1020			
\mathbf{Sc}_{6}	3002	1595	1637	2925	3273	v (C-N) 1230, v (C-O-C)1073, v (CN)2225			
\mathbf{Sc}_{7}	3066	1560	1635	2881	3267	v (C-N) 1229, v (C-F) 924, v (C-S)718			
\mathbf{Sc}_8	3103	1595	1639	2923	3248	v (C-N) 1237, v (C-F) 9011, v (C-S)720			
\mathbf{Sc}_{9}	3086	1604	1604	2904	3205	v (C-N) 1266, v (CN)2236 , v (C-S)724			
\mathbf{Sc}_{10}	3008	1578	1626	2885	3055	v (C-N) 1277, v (C-S)757			

Table 9:1H-NMR spectral data (8 ppm) for some synthesized compounds

Com. No.	Structures	Chemical Shift (δ ppm)	No. of Protons	Group
	o Cl Cl O	3.5	2	(-CH ₂ -)
	$C-N$ \downarrow $N-C$	4.4	2	(Cl-CH ₂)
\mathbf{A}_1		6.8- 7.8	6	Aro.Protons
	CIH ₂ CI	9.9	1	(C=O)N-H)
	O H H O N O	4.1	1	(C=C-H)
	H ₂ N N-C' NH ₂	6.3	2	NH_2
Ox_3		6.5	1	NH
	N ₂ (V	7.6- 8.1	8	Aro.Protons
	G. C.	2.5	1	(C=C-H)
$ h_2$	11 N 3	7.3	2	NH_2
	H_2N N N N N N N N N N	3.4	1	NH

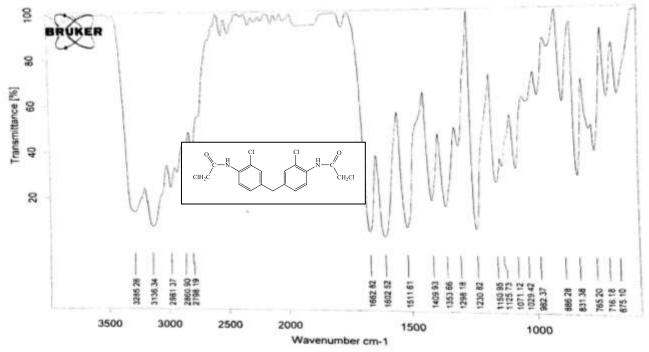


Figure 1: FT-IR spectrum of compound (A₁)

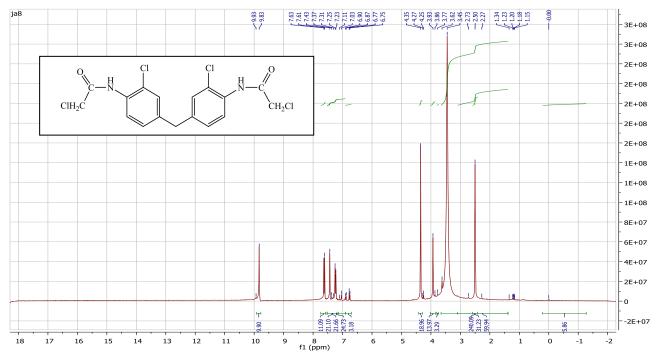


Figure 2: ¹H-NMR spectrum of compound (A1)

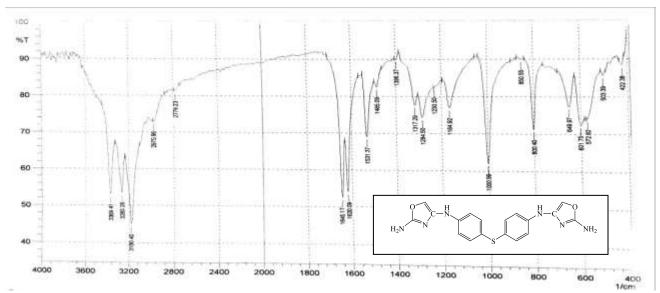


Figure 3: FT-IR spectrum of compound (Ox₃)

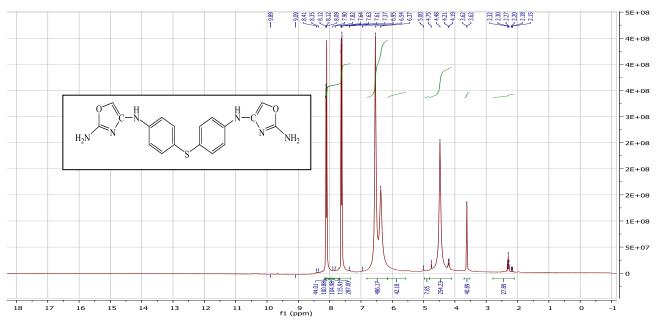


Figure $4:^{1}H$ -NMR spectrum of compound (Ox₃)

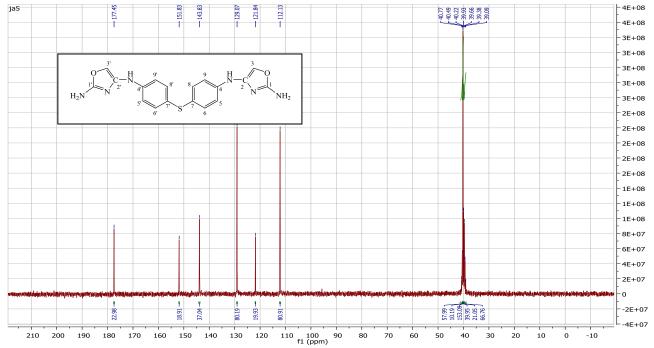


Figure $5:^{13}\text{C-NMR}$ spectrum of compound (Ox₃)

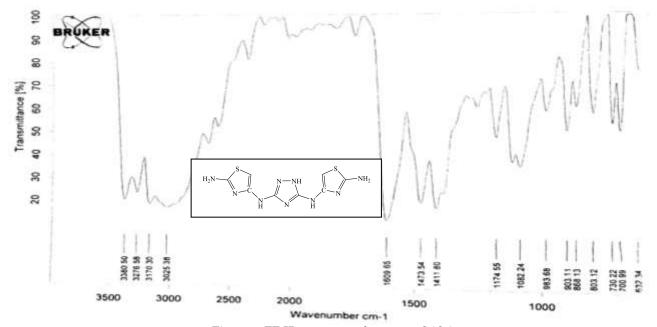


Figure 6: FT-IR spectrum of compound (th₂)

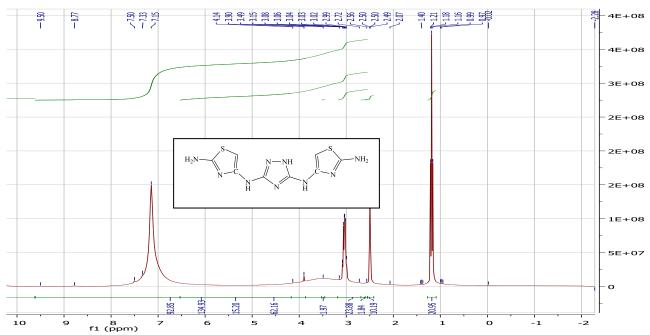


Figure 7:1H-NMR spectrum of compound(th2)

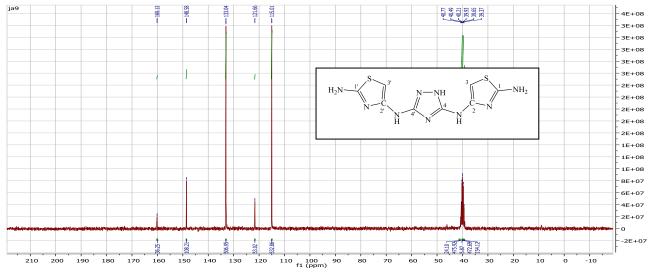


Figure (8):13C-NMR spectrum of compound (th2)

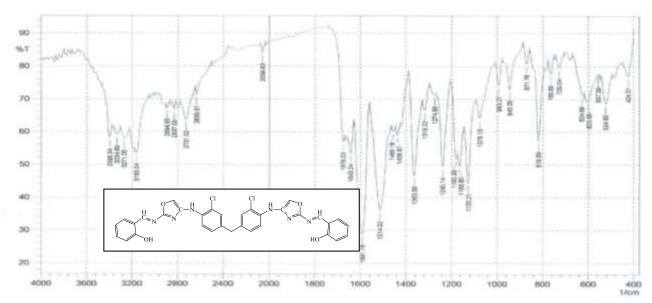


Figure 9: FT-IR spectrum of compound (Sc1)

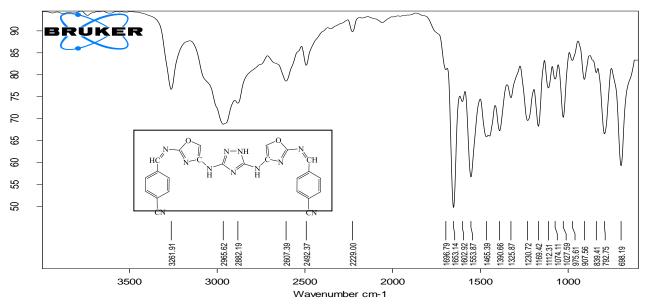


Figure 10: FT-IR spectrum of compound (Sc₄)

Conclusions

It was possible to prepare of new derivatives of di-heterocyclic five membered rings. The different results of FT-IR between the imines compounds and final derivatives showed that compounds the final were the obstructed in all preparation processes and because of the complete clarity in infrared this is the basis of preparation processes. The resonance results of ¹H-NMR demonstrated high accuracy in urbanization in terms of the number of protons compatible with the integral area.

References

 T Rossa, N Suveges, M Marcus, D Cantillo, C Kappe (2018) Continuous multistep synthesis of 2-(azidomethyl)oxazoles, Beilstein J. Org. Chem., 14: 506-514.

Acknowledgements

Thanks to everyone who has provided a helping hand for this research to appear in the best form to be published. Special thanks to M.Sc. Jalal Abdul - AL Kareem - Gazi University, Dr. Rasim Farraj Muslim - Department of Ecology - College of Applied Sciences - Heet - University Of Anbar and Ayad Mohammed Al-Mamoori for helping to complete the research as a full development to published.

2. Kadhem R Abdul-amir, N Majid, A Hussein, L Abdulghani (2016) Synthesis of New 1, 3-oxazole and imidazole-5-one derived from Aspirin, Al- Mustansiriyah J. Sci., 27 (3): 43-48.

- 3. Singh H Kaur, S Kumar, S Lata, A Kumar (2010) Synthesis and antibacterial activity of 3-chloro-4-substituted phenyl azetidnonyl thiazolidinonyl-1,3-oxazole, International Journal of Pharma Sciences and Research, 1 (2): 148-168.
- I Singh, H Kaur, S Kumar, S Lata, A Kumar (2010) Synthesis and antibacterial activity of 3-chloro-4-substituted phenyl azetidnonyl thiazolidinonyl-1,3-oxazole, International Journal of Pharma Sciences and Research, 1 (2): 148-168.
- 5. S Ampati, R Jukanti, V Sagar, R Ganta, S Manda (2010) Synthesis and in vivo antiinflammatory activity of a novel series of benzoxazole derivatives, Der. Chemica Sinica, 1 (3): 157-168.
- 6. W Hussein, G Zitouni (2018) Synthesis of new thiazole and thiazolyl derivatives of medicinal significant-a short review, MOJ Bioorganic & Organic Chemistry, 2(2): 52-55.
- Grybaitė I Jonuškienė, R Vaickelionienė, V Mickevičius (2017) "Synthesis, transformation and antibacterial activity of new N, Ndisubstituted 2-aminothiazole derivatives, chemija., 28 (1): 64-73.
- 8. N Uwabagira, B Sarojini, B Poojary (2018) N-(3-Chloro- 2-methylphenyl)-4-(4-fluorophenyl)-1, 3-thiazol-2-amine, Molbank, 1: 1-5.
- S Abu-Melha (2018) Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5arylazothiazole Derivatives as Potential Antibacterial Agents, Molecules, 23 (434): 2-11.
- 10. P Makam, P Thakur, T Kannan (2014) In vitro and in silico anti-malarial activity of 2-(2-hydrazinyl)thiazole derivatives, Eur. J. Pharm. Sci., 52: 138-145.
- 11. R Sirgamalla, A Kommakula, S Banoth, R Dharavath, K Adem, P Madhu, S Boda (2018) Synthesis of Amides from Aliphatic Acids and Amines by using of I2/TBHP at Room Temperature, Chemistry Select, 3: 1062-1065.
- 12. Y Tsuda, A Shigenaga, K Tsuji, M Denda, K Sato, K Kitakaze, T Nakamura, T Inokuma, K Itoh, A Otaka (2015) Development of a Chemical Methodology for the Preparation of Peptide Thioesters Applicable to Naturally Occurring Peptides Using a Sequential Quadruple Acyl Transfer System, Chemistry Open, 4: 448-452.

- 13. Y Wei, K Miaoand S Hao (2018) Novel 4-Methylumbelliferone Amide Derivatives: Synthesis, Characterization and Pesticidal Activities, Molecules, 23 (122): 1-13.
- 14. R Muslim, H Tawfeeq, M Owaid, O Abid (2018) Synthesis, characterization and evaluation of antifungal activity of seven-membered heterocycles, Acta Pharmaceutica Sciencia, 56 (2): 39-57.
- 15. N Krishna, M Babu, T Nageswara, M Baseveswara, K Appa, J Mastan (2017) Synthesis, Characterization and Biological Evaluation of Some Schiff's Base from 2-Amino Thiazole with Indole-3-Carbadehyde, J. Chem. Pharm. Res., 9 (5): 140-144.
- 16. O Abid, H Tawfeeq, R Muslim (2017) Synthesis and Characterization of Novel 1,3-oxazepin-5 (1H)-one Derivatives via Reaction of Imine Compounds with Isobenzofuran- 1(3H)-one, Acta Pharm. Sci., 55 (4): 43-55.
- 17. D Utreja, S Singh, M Kaur (2015) Schiff bases and their metal complexes as anticancer agents: a review, Curr. Bioact. Compd., 11 (4): 215-30.
- 18. H Shaaban (2016) Synthesis of some Heterocyclic Compounds Derived from 2-Chloro-N-p- Tolylacetamide, Al- Mustansiriyah J. Sci., 27 (4): 1-5.
- 19. S Prasad, T Swathy, V Niraimathi, B Indhumathi (2012) Synthesis, Characterization and Antimicrobial Activity of Some of the Benzocaine Derivatives, Int. J. Pharm. Sci., 4 (5): 285-287.
- S Adnan (2014) Synthesis and Identification some of heterocyclic compounds from 2-Aminobenzimidazole, Iraqi National Journal of Chemistry, 53: 66-75.
- 21. O Abid, R Muslim, K Mohammed (2016) Synthesis and Characterization of Novel 1,3,4,9a-Tetrahydrobenzo [e][1,3]oxazepin-5(5aH)-one Derivatives via Cycloaddition Reactions of Schiff Bases, J. Uni. Al-Anbar Pure Sci., 10 (3): 8-18.
- 22. O Abid, R Muslim, K Mohammed (2016) Synthesis and Characterization of Novel 1,3-oxazepin-4-ones derivatives via Schiff Bases Reactions with Phthalide, J. Uni. Anbar Pure Sci., 10 (2): 1-9.