

Journal of Global Pharma Technology

Available Online at: <u>www.jgpt.co.in</u>

RESEARCH ARTICLE

Synthesis, Characterization with Studying Physical Properties by Free Radical Polymerization of Some New Resins Starting from 5-Styryl-1, 3, 4-Thiadiazol-2-amine

Iman Mehdi Mohammed Hasan*

Department of Chemistry, College of Science for Women, University of Baghdad, Iraq.

*Corresponding Author Email: mra89605@gmail.com

Abstract

Starting from 5-styryl-1,3,4-thiadiazol-2-amine[1], a variety of Schiff bases [2-6] prepared, Schiff base derivatives which containing heterocyclic rings have been synthesized [7-11] as monomers. Then addition reaction(free radical polymerization) for monomers by using AIBN as initiator in (50-70) C⁰ obtaining [12-16] resins. All proposed structure were supported by FTIR, solubility, softening points, and some derivatives evaluated by 1H-NMR ,Elemental analysis, thermal analysis (TGA,DSC), X-Ray diffraction.

Keywords: Schiff bases, Derivatives with heterocyclic rings as monomers.

Introduction

The development of simple Synthetic routes to widely used organic compound using readily available reagent is one of the main objectives of organic Synthesis. The use of Schiff bases covered wide area applications, in industry and biological field [1]. In industrial application Schiff base derivatives were used as a rubber accelerators [2], antioxidants [3] and corrosion inhibitors [2].

They have wide industrial applications as photo stabilizers for polyethylene. In analytical chemistry Schiff bases were used for uptake of metal ions [4], and the resins of some compounds are used in the accurate determination of trace elements in dilute solution, which is often hindered due to the sensitivity limits of the equipment used for the purpose [5], in this study number of new resins were synthesis by free radical polymerization using AIBN as initiator in (50-70) CO.

Materials and Methods

General

Melting points were determined on Gallen kamp, melting point apparatus and were uncorrected. FTIR spectra of the compounds were recorded on a (SHIMADZU) FTIR. 8300 Spectrometer as KBR-disc, ${}^{1}H - NMR$, spectra

were recorded at 200.13-50.32 MH_z , respectively using tetra methyl Silane (TMS) as an internal standard, (DMSO) as a solvent. Elemental analyses were run using a perkin-Elmer RE 2400 (C.H.N) analyzer, thermal stability TGA &DSC. All analysis was performed in University of Baghdad/ College of Education for Pure Sciences Ibn-Al-Haitham Central Service Laboratory.

Materials

All the chemical used were supplied by (Merk, Fluka and BDH) chemicals, the solvents purified by distillation and dried with calcium chloride.

Measurement and Techniques

The purity of products were investigated by (T.L.C) technique by using a mixture of benzene- ethanol (5:5 v/v) as elute and iodine chamber for spot location.

Differential Scanning Calorimetry and Thermal Gravemetric Analysis

Differential Scanning Calorimetry (DSC) and Thermal gravemetric analysis (TGA) was carried out using LINSEIS (DSC), equipped with an internal cooler 2P-cooling accessory, and some of them were performed in Chemistry department, College of Education for Pure Sciences \setminus Ibn AL-Haitham [The Central Service Laboratory].

X-Ray Diffraction Analysis

Investigated crystalline resins were evaluated by using (X-Ray diffraction analysis) using X-Ray Diffract meter Siemens SRS D 500 equipped with Copper($\lambda = 1.54 \text{ A}^0$) Ascan rat of 4 Θ / min over the rang of (1-60) (2 Θ) was used for detecting the characteristic diffraction peaks of the synthesis resins in the pure state.

Softening Point Instrument

Softening point/ REICHERI THERMOVER/ OREICHERT-Jung was recorded in University of Bagdad, College of Science, and Department of Chemistry.

Synthesis 5-styryl-1, 3, 4-thiadiazolamine [1][7]

Mixture (0.01 mol) of α -phenyl acrylic acid with (0.01mol) thiosemicarbazide in (10ml) of POCl₃ was Refluxed 4hrs,the excess of POCl₃ removed and the residue dissolved in distilled water (50ml) then heated for1hrs.Then the resulting product cooled, filtered dnd neutralized with KOH. The precipitate was filtered, dried and recrystallized in ethanol. (m.p 238 – 240 oC) solid, violet.

Synthesis of Schiff bases [C₂-C₆] ⁽⁶⁾

Schiff bases $[C_2-C_6]$ were prepared by well estable procedure in the literature[8], condensing (0.01mol) compound [1] with (0.01mol) corresponding substituted different aldehydes and ketons in acetic acid, The mixture was refluxed for (30min), the products were separated by filtration .the physical properties were listed Table (1)investigated by T.L.C (m.p $212 - 214 \text{ C}^{0}$) solid, red, for [C₃] m.p (204-206) C⁰ yield (80), [C₄] m.p (217-219), yield (75),[C₅] m.p (221-223),yield (75),[C₆] m .p (209-211), yield(70) ...

Synthesis of Schiff base derivatives containing heterocyclic ring as monomer [C7-C11] [8]

A250ml necks mixture of (0.04mol) [C7-C11], thio acetic acid (0.04mol) in dry benzene(30 ml) was refluxe for(10 hrs, checked by T.L.C), the solvent was removed then was with absolute boiling ethanol(15ml), precipitate collected by filtration, then washed with ethanol to obtain brown precipitate, m .p (180-182)C⁰.yield(70)% for $)C^{0}.yield(65)$ [C₇],m .p (174-176)% for[C₈],m. p(171-173)C⁰.yield(60)% for [C₉],m .p (166-168)C⁰.vield(65)% for[C₁₀], and m .p (163-165)[C₁₁].yield(60)% respectively.

Synthesis of resins $[C_{12}-C_{16}]$ [9]

The polymerization of these monomers was carried out in THF by using AIBN as initiator .A solution of the monomers (2.5 g m) in THF(15ml) and (5mg) of initiator were mixed in round bottle . The mixture was heat in oil bath (50-70) C^0 .After (2hrs). The contents in flask were poured into large amount of (methanol- water) to precipitate the resins and evaporated under vacuumed, purity by T.L.C see Table (1).

Results and Discussion

Considerable interest have been expressed in synthesis of schiff bases in recent year due to their industrial and biological importance, starting from (5-styryl-1, 3, 4-thiadiazol-2amine) [1].

Scheme-1: synthesis of $[C_1]$

The FTIR spectrum [10] [1] showed the strong stretching (3302)cm⁻¹ due to (NH_2) groups, (2931-2858) cm⁻¹ for (CH_2) , (1658)cm⁻¹ for (C=N) in thiadiazol ring, (1260-1045) cm⁻¹ for (c-o-c), (830) cm⁻¹ for (1,4-disubst), (3090) cm⁻¹ for (Ar-H), (1340) cm⁻¹; for (C-N); 1H-NMR⁽¹⁰⁾ (DMSO-d6) \delta: (6.6-7.8)ppm due to (Ar-H), (9.5)ppm due to (2H,NH2), (1.42-

2.81)ppm for (2H,CH2); Elemental analysis (C.H.N) for compound [1] were fitted according to the (Table 3). Therefore Schiff base $[C_2-C_6]$ prepared by the condensation of the corresponding compound [1] with substituted aromatic aldehyde and ketone in refluxing ethanol.

Scheme-2: Synthesis of [C₂-C₆]

The reaction proceeds by the nucliophilic attach of the nucleophilic nitrogen atom of the amine on the carbonyl group of aldehyde with the loss of water molecular to give a stable compound[4] in good yield, the FTIR spectrum showed the strong bands (1689)cm⁻¹ for (C=N) combined with disappearance of

stretching bands (3302) cm⁻¹ of (NH2) , (1583)cm⁻¹ for (C=C), (2900-2800)cm⁻¹, (761)cm⁻¹ due to (C-Br) and (1150-1160) cm-1 absorption bands for phenolic group (C-O). Elemental analyses for compound [4] were fitted according to the (Table 3).

 $[C_9 - C_{11}]$

 $[C_7 - C_8]$

Compound [9] indicated in FTIR spectrum of stretching vibration is more broad band's for (OH)vibration(3406-3369)cm⁻¹, bands at (2958-2877)cm⁻¹ for (CH2) and strong vibration at (1220-1168) cm⁻¹ for (C-O- \bigcirc), (3076) cm⁻¹ for (=CH), (1689) cm⁻¹ for (C=N) and (1585)cm⁻¹ for (C=C); 1H-NMR(DMSO-

d6) δ : (7.03)ppm due to (Ar-H), (2.4-3.5)ppm for(H,CH₂), Elemental analysis for compound[9] were fitted according to the (Table 3). Similarly reacts compounds [C₇-C₁₁] with AIBN initiator afforded [C₁₂-C₁₆] derivatives respectively.

Scheme-4: Synthesis of [C12-C16]

The FTIR spectrum of compound [14] stretching vibration of (OH) at (33373-3306) cm⁻¹, (=CH) at (3009), (CH₂) at (2926-2854) cm⁻¹, amide carbonyl group(C=O) at (1735) cm⁻¹ and (C=C) at (1627-1514) cm⁻¹; 1H-NMR(DMSO-d6) δ : (6.8-8.9)ppm due to (Ar-H), (9.09-9.7) due to (H,OH), (2.1-2.4)ppm for (2H,CH2). Elemental analyses for compounds [14] were fitted according to the (Table 3).

All these steps were summarized in schemes (1-4) physical properties of all mentioned and other details [FTIR, Elemental analysis, TGA & DSC analysis, 1H-NMR, data are listed in Tables (1-7) respectively, curing thermal stability of some compounds were evaluated by using (TGA &DSC) Table (5) are clearly show the temperature rate belong to different type dissociated for derivatives, Fig(11-14).

No	Molec ular formu la	М.Р С ⁰	Colour	Yield %	Purification solvent	Comp No	Molecular formula	M.P C ⁰	Colour	Yield %	Purificatio n solvent
1	$C_{10}H_6$ N ₃ S	238- 240	Pale violate	90	Ethanol	9	$C_{20}H_{19}N_3S_2O_3$	171- 173	Brown	60	THF
2	$C_{16}H_8$ N ₃ SBr	212- 214	Deep Red	87	Ethanol	10	$\begin{array}{c} \mathrm{C_{18}H_{14}N_{3}S_{3}O}\\ \mathrm{Br} \end{array}$	166- 168	Brown	65	THF
3	$\begin{array}{c} C_{19}H_{10} \\ N_3S \end{array}$	204- 206	Brown	80	THF	11	$\begin{array}{c} C_{19}H_{13}N_4S_2O\\Br\end{array}$	163- 165	Brown	60	THF
4	$\begin{array}{c} C_{18}H_{15}\\ N_3S \end{array}$	217- 219	Brown	75	THF	12	$C_{17}H_{13}N_3S_2O_2$	oily	Brown	70	Methanol
5	$\begin{array}{c} C_{16}H_{12}\\ N_4S_2B\\ r\end{array}$	221- 223	Brown	75	THF	13	$C_{20}H_{15}S_2N_3O_3$	oily	Brown	72	Methanol
6	$\begin{array}{c} C_{17}H_{13}\\ N_4Br \end{array}$	209- 211	Brown	70	THF	14	$C_{20}H_{17}S_2N_3O_2$	oily	Brown	65	Methanol
7	$\begin{array}{c} C_{17}H_{12}\\ N_3S_2O_2 \end{array}$	180- 182	Brown	70	THF	15	$\begin{array}{c} \mathrm{C_{19}H_{14}S_{3}N_{3}O}\\ \mathrm{Br} \end{array}$	oily	Brown	65	Methanol
8	$C_{20}H_{17} \\ N_3S_2O_3$	174- 176	Brown	65	THF	16	$\frac{C_{19}H_{15}S_2N_4O}{Br}$	oily	Brown	65	Methanol

Table 1: Dapcited physical properties for [1-16] compounds

N o	\mathbf{VNH}_2	VCH2	VC-O-C	V=CH	Others	No	VOH	VCH2	VC-O-C	V=CH	Others
1	3302	2931 2858	$\begin{array}{c} 1260 \\ 1045 \end{array}$	3090	NH(3190),C- S(666),C=N(1658) in thiadizol ring,C=C(1597) VC-N(1338)	9	3406- 3369	2958- 2877	$\begin{array}{c} 1201 \\ 1205 \end{array}$	3076	C=O(1761- 1716), C=C(1610- 1595), C- S(671)
2	-	2900 -2800	$\begin{array}{c} 1200\\ 1212 \end{array}$	3091- 3028	VC=N(1687- 1670), VC=C(1583), C- Br(761)	10	-	$2910 \\ 2875$	$\begin{array}{c} 1240 \\ 1210 \end{array}$	3020	C=O(1745),C= C(1556),C- S(698)
3	-	$2954 \\ 2896$	$\begin{array}{c} 1192 \\ 1100 \end{array}$	3019	VC=N(1686)) VC=C(1587),	11	-	2935 2870	$1235 \\ 1228$	3009	C=O(1753),C= C(1601- 1596),C- S(675)
4	-	2974	1226 1168	3055	VC=N(1689),OH(3471) VC=C(1585)	12	-	$2900 \\ 2865$	1268 1238	3068	C=O(1765),C= C(1596),C- S(689)
5	-	2985 2980	$\begin{array}{c} 1218\\ 1210 \end{array}$	3044- 3056	VC=N(1615) VC=C(1600- 1591),C-Br(782)	13	-	$\begin{array}{c} 2910\\ 2845 \end{array}$	$1250 \\ 1255$	3056	C=O(1711- 1709),C=C(16 01-1594),C- S(621)
6	-	2972 2968	$\begin{array}{c} 1220\\ 1214 \end{array}$	3067- 3078	VC=N(1612) VC=C(1578- 1589)	14	3373- 3306	2926- 2854	$1260 \\ 1265$	3009	C=O(1735),C= C(1627- 1514),C- S(686)
7	-	2945- 2838	1265- 1212	3026- 3067	VC=N(1603- 1623),VC=C(156 5),	15	-	2956- 2823	1254- 1222	3045	C=O(1712- 1734),C=C(16 00-1587),C- S(621-619)
8	-	2966- 2834	1240-1245	3058- 3059	VC=N(1649- 1641),VC=C(160 0-1589)	16	-	2954- 2892	1283- 1289	3071	C=O(1725), C=C(1598), C- S(659)

Table 2: FTIR spectral data of [1-16]

Table 3: Depacited Elemental analysis (C.H.N. S) for some compounds

Comp. No	% C(found)	%H(found)	%N(found	%S(found)
1	59.41 (61.11)	3.96 (4.15)	20.79 (21.43)	15.84 (16.14)
2	51.61 (52.21)	2.69 (2.97)	11.29 (12.45)	8.60 (9.44)
4	68.12(69.11)	3.47(4.46)	13.25(14.21)	10.09(11.09)
8	56.1(57.09)	3.74(4.44)	9.81(10.02)	14.9(15.85)
11	49.67(50.67)	3.92(4.91)	12.20(13.10)	13.94(14.85)
15	54.11(55.09)	3.50(4.50)	10.5(11.45)	8.00(9.00)

Table 4: Depacited¹ H-NMR spectrum data for some compounds

No. comp	¹ H-NMR/ppm	No. Comp	¹ H-NMR/ppm
1	δ:3.9-4.4 for(H,CH ₂),6.6-7.8(Ar-H),9.5(H,NH)	9	δ:(2.4-3.5)for (H,CH ₂), 7.03 (Ar-H)
4	$\delta:(2.4-3.4)$ for(H,CH ₂₎ , 7.4-7.9(Ar-H) , 10.3(H,OH)	15	δ:(2.1-2.4)for(H,CH ₂), (6.8-8.9) (Ar-H), (9.09- 9.7) for(H,OH)

Table 5: Thermal behavior data for synthesized Resins [C₁₃-C₁₆]

Comp. No	On set point C ⁰	$T_{ m g}$	Off set point C^0	Char%
13	44.9	47.7	64.1	80%
14	414.6	415.5	426.7	87%
15	53.5, 131.5, 323.2	54.6, 133.3, 328.3	72.3,142.7, 334.2	87%
16	100 ,112.5	101.7	108.5-124.1	88%

*On set point temperature recorded by (TGA &DSC).

*The midpoint temperature of base line shift on the subsequent (TGA&DSC) trace (as heating rate 10 C⁰/min) was defined as. *Residual weight percentage at (600) C⁰ under Nitrogen flow.

Table 6 : Solubility of [12-16] Resins

Comp.No	DMF	DMSO	Triethyl amine	$\rm CH_3Cl$	THF	Cyclo hexane	m-Cresol
12	+ +	+ +	++	-	-	+	-
13	++	++	++	-	-	+	-
14	++	++	+	-	-	+	-
15	++	++	+	-	-	+	-
16	++	++	+	-	-	+	-

Where(++) = Soluble at room temperature , (+) = Soluble with heat , (-) = Insoluble even with heating.

Table 7: Softening points of [12-16] Resins					
Comp.No	Softening point (C ⁰)				
12	250-261				
13	203-210				
14	>300				
15	>300				
16	>300				

Fig. 1: FT-IR of [C1]

Fig. 2: FT-IR of [C2]

Fig. 11: TGA & DSC thermo gram of resin [C13]

Iman Mehdi Mohammed Hasan | Journal of Global Pharma Technology | 2018 | Vol. 10 | Issue 11 (Suppl.) | 125-136

Fig. 13: TGA & DSC thermo gram of resin [C15]

Fig. 14: TGA & DSC thermo gram of resin [C16]

Fig. 15: X-Ray of resin [C12]

Fig. 16: X-Ray of resin [C13]

Fig. 18: X-Ray of resin [C16]

Conclusion

Through this work we have succeeded synthesis monomers with heterocyclic ring which give highly thermal stability and good solubility and agreement with proposed structure. Most of the synthesized Schiff base derivatives were potential lead for industrial application and biological activity respectively, on the basis of observed results it may be concluded that the substitution favors the activity. The derivatives are known to be influenced to a great extent by two aryl structure, .i.e. Schiff base derivative resins molecular and their substitution. Especially the hydroxyl substituent's is one of the key group of enhance greatly the industrial application mainly due to its easy conversion of phenoxy radical through the hydrogen atom transfer mechanism, there are a number of structurally diverse Schiff bases have been synthesis and evaluated for industrial application and biological activity.

References

- 1. Hakan B, Nesrin K, Deniz S, Ahmet D, Sengul Neslihan D (2010) Molecules,15: 2427-2438.
- 2. Verma C, Olasunkanmi LO, Ebenso EE, Quraishi M (2016) Adsorption behavior of glucosamine-based,pyriidine-fused heterocycles as green corrosion inhibitors for mild steel;experimental and theoretical studies, J. Phys Chem., 120:11598-611.
- 3. Raied M, Sh Azhar A, Mahmood AA (2014) Molecules, 19:3436-3449.
- 4. Shohei M, Tatsuhiko A, Koki I, Makote F (2014) Journal of the American Chemical Society, 136(32):17899-17901.
- 5. Jamil DM, Al-Okbi AK, Al-Baghdadi SB, Kadhim A (2018) "Experimental and theoretical studies of Schiff bases as corrosion inhibitors, J. Chem. Cent., 12:7.
- 6. H Schiff (1864) Ann 131: 118.

- 7. Mahmoud AS (2014).Ph.D. Thesis, University of Baghdad, Iraq,"Preparing of New Organic Compounds with Liquid Crystalline Properties".
- 8. Sarah S.A (2014) Ph.D. Thesis, University of Baghdad, Iraq."Synthesis and Characterization with Study of the Thermal Properties and Biological Activity for Some New Monomers and Polymers Containing Heterocyclic Rings".
- Simon H, Xuan L, Jean NO, Oliver Jean, D Mathias D (2014) Polymers, 6:1437-1488.
- 10. RM Si inverstein (1981)"Specro metric Identification of Organic compound", 4th Ed, 2.
- 11. DH Williams Felming, Translated by Sarkss JY (1986) "Spectroscopic Methods in Organic Chemistry", Baghdad University, 1st Edition.